
Comparing Emilua to NodeJS

NodeJS Emilua

V8 LuaJIT

libuv Boost.Asio

Emilua is an execution engine for Lua. It fills a role similar to NodeJS for Javascript. Apart from
being an execution engine, the two have leaps and leaps of differences.

I believe a good first post for this blog would be to clarify the differences between NodeJS and
Emilua. NodeJS is very popular and people try to port its API to different languages[1][2][3]. Even non-
users of Javascript know NodeJS. By describing Emilua in terms of differences against NodeJS I
hope to offer a turbo heads-up. Comparisons also offer me the opportunity to touch on many other
topics that I enjoy.

I’ll also try to make it brief. If needed be, links to some lengthy posts from other authors that
already covered the topic in detail will be included.

One color
The first difference is Emilua’s commitment to avoid Bob Nystrom' two colors problem. The
problem has been extensively covered elsewhere:

• Christopher Kohlhoff 2015’s ignored await-less coroutine proposal to the C++ committee.

• Humble lua users asking for humble APIs.

• Very old manuals on continuation-passing style (for JS).

• Examples why the promises pattern wasn’t enough (and the crusade on search for coroutines
went on).

• Java’s report on project Loom.

• Ron Pressler’s talk on high-level APIs for IO concurrency.

1

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0114r0.pdf
https://leafo.net/posts/itchio-and-coroutines.html
https://marijnhaverbeke.nl/cps/
https://blog.risingstack.com/mastering-async-await-in-nodejs/
https://blog.risingstack.com/mastering-async-await-in-nodejs/
https://cr.openjdk.java.net/~rpressler/loom/loom/sol1_part1.html
https://www.infoq.com/presentations/continuations-java/

NodeJS redundant interfaces

tls = require('tls');
fs = require('fs');

options = {
 // sync interfaces
 key: fs.readFileSync('server-key.pem'),
 cert: fs.readFileSync('server-cert.pem')
};

// async interfaces
server = tls.createServer(options, function(socket) {
 // ...
});

In a nutshell, every function in Emilua has the ability to suspend the caller function. The runtime
will schedule every fiber behind the scenes, and you don’t need to wrap the function operator call
based on the resources the callee will make use of.

Whereas manuals from some frameworks will instruct you to annotate every call that might block
with await…

Pseudocode example on await

n = await read(sock, buf);
await write(sock, buf[:n]);
// ...

Emilua won’t force you to do the same. IO scheduling is a transparent resource. IO scheduling is not
part of the function type signature. You don’t need to break the API just because your function
implementation just now requires IO activity.

Is it a coroutine… or is it a fiber?
The previous point may have been extensively debated, and it was in this debate that comparisons
among the following styles was appropriate:

• Events and polling.

• Callbacks.

• Signals & slots.

• Observers.

• Promises.

• Functional patterns.

• Coroutines.

2

But Emilua is built around fibers and it is inappropriate to compare fibers and the previous choices.
I’ll now compare fibers and coroutines to make this subtle point.

Coroutines may be an old concept that suggest language constructs capable to suspend and resume
a function context[4], but fibers come from attempts to provide user-space threads, and, as such, will
adhere to threads vocabulary. The presence of threads vocabulary imply a scheduler (i.e. if you call
mutex.lock(), your code doesn’t need to know which fiber to awake next as this will be taken care of
by the scheduler). This difference is noted by authors of fiber libraries, but rarely stated explicitly,
so it’s worth to link one of the few texts that make explicit the difference:

The difference between a fibers facility and just coroutines is that with
fibers, you have a scheduler as well.

— Lightweight concurrency in lua, http://wingolog.org/archives/2018/05/16/lightweight-concurrency-in-lua

The difference is important because if you have threads vocabulary, you have not only vocabulary
to express concurrent tasks, but also vocabulary to tame this very concurrency with mutexes,
condition variables, and the like. None of the previous options of this list — callbacks, promises,
coroutines, etc — had such sync primitives.

Ruby 3.0 also has support for fiber-based concurrency. The collective result of
what they offer is a form of fiber-based concurrency.

However the single abstraction Fiber from their docs is really just a coroutine, not
a fiber. The difference between fibers and coroutines is not the lack of a stack.
Schedulers are the real defining trait.

The situation got even more confusing as they added “non-blocking fibers” [sic]. If
a scheduler for the thread is set, their “non-blocking fibers” [sic] will finally act as
fibers and only then the terminology will be correct (except for the “non-blocking”
part which is a meaningless adjective).

Promises alone won’t save you from dealing with issues that are inherent to the world of
concurrency[5][6][7]. Read Mike Bayer’s case on await sharing more properties (and problems) with
threads than it’s usually acknowledged for.

Here’s a small example, an implementation for the very simple socket-pair algorithm. First in
NodeJS:

var net = require('net');

function socket_pair(callback) {
 var result = {}

 var server = net.createServer(function(sock) {
 server.close()
 if (result.err) {
 return
 }

3

http://wingolog.org/archives/2018/05/16/lightweight-concurrency-in-lua
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/
https://techspot.zzzeek.org/2015/02/15/asynchronous-python-and-databases/

 if (result.sock) {
 callback(null, [sock, result.sock])
 } else {
 result.sock = sock
 }
 })

 server.on('error', function(err) {
 if (result.err) {
 return
 }
 result.err = err
 callback(err)
 })

 server.listen(0, '127.0.0.1', function() {
 var sock = new net.Socket()
 sock.connect(server.address().port, '127.0.0.1', function() {
 if (result.err) {
 return
 }
 if (result.sock) {
 callback(null, [sock, result.sock])
 } else {
 result.sock = sock
 }
 })
 sock.on('error', function(err) {
 if (result.err) {
 return
 }
 server.close()
 result.err = err
 callback(err)
 })
 });
}

Do notice how NodeJS’s lack of sync primitives forces you to write your own synchronization (the
result rendezvous point in the example). Now take a look at how Emilua will make the task much
simpler by enabling you to use the fiber.join() sync vocabulary:

local ip = require 'ip'

function socket_pair()
 local acceptor = ip.tcp.acceptor.new()
 local addr = ip.address.loopback_v4()
 acceptor:open(addr)
 acceptor:bind(addr, 0)
 acceptor:listen()

4

 local f = spawn(function()
 local sock = ip.tcp.socket.new()
 sock:connect(addr, acceptor.local_port)
 return sock
 end)

 local sock = acceptor:accept()
 acceptor:close()
 return sock, f:join()
end

And there is a little something else. Preemptiveness isn’t a property exclusive to OS-provided
threads. Runtimes from some languages will manage to deliver just this property to fibers as well.
Emilua will stay out of preemptiveness (i.e. you’re guaranteed to have a safer environment) just like
many others. But if you’re restricted to cooperative multitasking, you managed to migrate some
scheduling decisions from runtime to compile-time. Most frameworks will stop here, but Emilua
will go just one mile further.

If you moved some scheduling decisions to compile-time, it makes sense to also move sync
primitives to compile-time… or, rather… scheduling constraints. Ideally, your code wouldn’t compile
when these constraints aren’t respected. I’m not there yet and there are static analysers waiting to
be written, but the vocabulary to encode the user expectation in Lua is here. The vocabulary works
like C’s assert(). One alternative would be to just rely on mutexes as usual, but there are these little
abusers — like me — of deterministic suspension points that you’ll never tame, so I’m adding this
little tool anyway to prevent further damage.

Opinionated concurrency style
Bob Nystrom’s warning about two colors wasn’t enough.

Choose your async model; we don’t mind; we encourage experimentation.

If you don’t like callbacks and event emitters, use coroutines and write
blocking style code without actually blocking your event loop!

— Luvit homepage, https://luvit.io/

From experience with Boost.Asio, I noticed that you can’t just defer the choice to the user and get
rid of making one. What happened to Boost.Asio is that you cannot appropriately support any one
model.

• Limitations from one model infect other models (e.g. orientation towards IO objects and not
threads). This point by itself could give a lengthy article, but nowadays I’m less concerned with
convincing people and more concerned with respecting my own precious time, so you’ll only
have my word here.

• You cannot rely on the strengths that are exclusive to one model (e.g. disable interruption at

5

https://luvit.io/

critical blocks). It may seem redundant with the previous point because it’s just another face of
the same coin.

• You just created a new model. Your “unopinionated” model is a meta-model that forces every
library provider to write convoluted code. Again, another lengthy article that will not receive a
share of my time. If you’re curious, try looking for libraries built around Boost.Asio that work
with the completion token protocol.

Emilua cares about serving one concurrency style and serving it well: fibers.

>Boost.Fiber
>(https://www.boost.org/doc/libs/1_67_0/libs/fiber/doc/html/index.html)
>is another way. This also supports futures, although not currently
>then-able ones.

Boost.Fiber doesn’t need fibers::future::then - just suspend the fiber. If you
need more concurrency than that, launch another fiber. then() is redundant
with coroutine and fiber concurrency.

— Nat Goodspeed, Boost mailing list, 2018

Active style
A friend of mine teached me this principle early on that affected all my future projects: design your
abstractions where the user is an active party on scheduling decisions. I’ve been calling it the active
style and people usually don’t get it what it is about, but consequences of this design are better
understood (e.g. dealing with back-pressure).

Ryan Dahl’s successor for NodeJS also got this point covered:

Node’s counterpart to promises was the EventEmitter, which important
APIs are based around, namely sockets and HTTP. Setting aside the
ergonomic benefits of async/await, the EventEmitter pattern has an issue
with back-pressure. Take a TCP socket, for example. The socket would emit
"data" events when it received incoming packets. These "data" callbacks
would be emitted in an unconstrained manner, flooding the process with
events. Because Node continues to receive new data events, the underlying
TCP socket does not have proper back-pressure, the remote sender has no
idea the server is overloaded and continues to send data. To mitigate this
problem, a pause() method was added. This could solve the problem, but it
required extra code; and since the flooding issue only presents itself when
the process is very busy, many Node programs can be flooded with data. The
result is a system with bad tail latency.

6

https://www.boost.org/doc/libs/1_67_0/libs/fiber/doc/html/index.html
https://lucumr.pocoo.org/2020/1/1/async-pressure/

— Deno 1.0, https://deno.land/v1

Emilua is more explicit
Emilua is also just more explicit. Many years ago, NodeJS actually attracted me. Its API (at the time)
was better than the HTTP server libs that I’d design. It helped to push me forward. Unfortunately it
feels like it stopped in time and didn’t preserve this "pusher" feeling.

What attracted me at the time was its lower-level approach to web protocols. I always had trouble
understanding layers and layers of web frameworks from Python to Java worlds.

Emilua is therefore also low-level in a few regards — even more than NodeJS. Emilua doesn’t have
implicit — and conceptually unbounded — write buffers. If you have multiple fibers writing to the
same network socket, you better sync them somehow or the receiver will see corrupted streams[8]

(just use a mutex to protect the write side and you’re done).

Another example would be creating an acceptor socket where you’re explicitly required to open +
reuse-address + bind + listen to achieve effects that you have by default with NodeJS.

Although this is the general principle, external native plugins may choose to
implement different policies.

You may also see Emilua as a safer training camp before you delve into even lower-level C APIs.

Structured concurrency
There is a growing interest in structured concurrency. Much of the arguments either just lack the
required rhetoric or are plain cargo cult programming.

Martin Sústrik has an actual good article on the topic. You just have to be careful to extract the
guiding principle behind the specifics. Were it only for the specifics, I could easily dismiss these
concerns as not being valid for my use case because the GC will take care of ensuring that values
from parent scopes won’t be destroyed while they’re required.

However, one fact remains: the user can have legitimate reasons to have truly detached
“unstructured” tasks. Emilua won’t force these users to change their code. Also, structure is not
only achieved through fiber.join(). The user might very well use a condition variable to add
structure. It’s dumb to force every structure pattern undergo the same vocabulary.

By default, NodeJS' continuation-passing style discards any structure that the runtime could detect.
NodeJS however can detect unhandled promises. If a promise is rejected and no error handler is
attached to the promise within a turn of the event loop, the unhandledRejection process' event is
emitted:

process.on('unhandledRejection', function(e, p) {
 console.error(e.stack || e);
});

7

https://deno.land/v1
http://250bpm.com/blog:71

Emilua behaviour is similar. You lose structure when you detach a fiber or a joinable fiber handle is
GC’ed. For the case of lost structure, no action is taken unless the fiber errors. If an exception
escapes the detached fiber, the uncaught-hook is called. The default hook will just print the stack
trace to stderr.

spawn(function()
 -- will print stacktrace to `stderr`
 error('foobar')
end):detach()

-- code here keeps running

And the rest of the application can keep running thanks to invariants being preserved by the
cleanup handlers (they are similar to Python’s with blocks), but if a cleanup handler on a detached
fiber fails, then all bets are off and the VM is shut.

Threads
NodeJS’s solution to threading is cheap. Create another process and make the two communicate
through messaging.

It looks cheap. It is cheap. But it makes sense. These scripting languages (JS, lua, Python, …) just
don’t play well with threading.

However this solution poses other questions that many frameworks stepped on and go unanswered
on NodeJS’s case. If you create too many threads to speed-up task A, you might end up starving task
B. You also face this dilemma in C every time you write a library and it is tempted — an uncommon
occurrence FWIW — to spawn a few threads for a small sub-task (e.g. if you want to do a parallel
sort inside your function). The threading layout is a property that belongs to the application, not the
library. This is one of the issues solved by the executor design in Boost.Asio. Similar efforts exist in
different frameworks.

Node

Thread Thread Thread

...
V8 VM V8 VM V8 VM

Figure 1. Threading model for NodeJS

8

As for Emilua, you might spawn a VM and it won’t create an extra thread. The child VM will share
its parent’s thread. And you might freely choose which group of VMs use which thread pools. The
threading layout is under your control. I want to keep it brief, so I won’t expand more on this point.

Emilua¬

Heavy work thread pool

UI thread
Thread Thread Thread

LuaJIT
VM

VM VM VM

VMs waiting to be executed

VM VM VM VM ...

¬One possible layout. You may come up with your own.

Figure 2. Threading model for Emilua

It may be more interesting for you to know that the same vocabulary to accomplish just the above
is also the vocabulary that enables you to use a full actor system. Choose how many extra threads
your application should use (if any) and let each actor/VM be scheduled transparently behind the
scenes. You should check the tutorial on the documentation to have a brighter picture.

The same actor system might enable us in the future to run a few isolated actors inside Linux
namespaces or even qemu guests, but that’s a far away milestone.

For now, you can already make use of a system similar to Akka and Quasar. Just one caveat: Akka
focuses on distributed systems while Emilua only sees actors as a pattern that retains good
scalability to dispatch many work units to a shared thread pool. I’m sure the API will break and
evolve as I mature my vision on the actor model.

HTTP
Emilua’s HTTP abstractions were designed as a gateway interface so it’s easier to develop different
backends (but a new backend is always difficult by itself and a time-consuming task nevertheless,
so don’t get your hopes high).

As of the 0.1 release, the HTTP module is an experimental feature and must be
explicitly enabled at build time. Please report any bugs you find and they will be
fixed. One bug that I’m aware of is the lack of limits to protect against DoS attacks.

9

That means a remote endpoint might force your application to indefinitely allocate
memory to store HTTP headers. This issue will be solved in the next releases.

NodeJS has a hidden state machine that gets into action when you call writeHead() and family.
Emilua’s state machine is explicit. You can query its read_state and write_state. State transitions
are fully documented and it is easy to understand which pieces of the payload will be touched by
each write_*() method. This is also part of the gateway orientation effort.

function handler(req, res) {
 var data = [];
 req.on('data', function(chunk) {
 data.push(chunk);
 });
 req.on('end', function() {
 // handle the request
 });
}

Messages are entities separate from sockets. Given the gateway-oriented design, a socket’s concrete
implementation might not be an embedded HTTP/1.1 server. Only the socket type needs to be
polymorphic and it doesn’t make sense to turn the message polymorphic as well. More reasons
exist: if we desire to offer a socket with some alternative HTTP pipelining support, a socket-message
separation makes it clear what’s going on. In other words, this design might benefit alternative
implementations for our gateway-oriented design.

function handler(sock, req, res)
 while sock.read_state ~= 'finished' do
 sock:read_some(req);
 end
 // handle the request
end

Backend-specific details are erased from the messages. You’ll never query the HTTP version out of a
message because it doesn’t make sense to other backends. You query capabilities instead and the
whole model is oriented around capabilities from HTTP/1.0 and HTTP/1.1. If you’re worried about
too many layers of engineering, don’t be alarmed! The actual API is very small.

local ip = require 'ip'
local http = require 'http'
local sleep_for = require 'sleep_for'

local acceptor = ip.tcp.acceptor.new()
acceptor:open('v4')
acceptor:set_option('reuse_address', true)
if not pcall(function() acceptor:bind(ip.address.loopback_v4(), 8080) end) then
 acceptor:bind(ip.address.loopback_v4(), 0)
end

10

print('Listening on ' .. tostring(acceptor.local_address) .. ':' ..
 acceptor.local_port)
acceptor:listen()

while true do
 local sock = http.socket.new(acceptor:accept())
 spawn(function()
 local req = http.request.new()
 local res = http.response.new()

 res.status = 200
 res.reason = 'OK'

 while true do
 sock:read_request(req)
 sock:write_response_continue()

 print(req.method .. ' ' .. req.target)

 while sock.read_state ~= 'finished' do
 req.body = nil --< discard unused data
 sock:read_some(req)
 end

 if sock.is_write_response_native_stream then
 sock:write_response_metadata(res)

 sleep_for(1000)
 res.body = '3...\n'
 sock:write(res)

 sleep_for(1000)
 res.body = '2...\n'
 sock:write(res)

 sleep_for(1000)
 res.body = '1...\n'
 sock:write(res)

 sleep_for(1000)
 res.body = 'Hello World\n'
 sock:write(res)

 sock:write_end_of_message()
 else
 res.body = 'Hello World\n'
 sock:write_response(res)
 end
 end
 end):detach()

11

end

Emilua’s HTTP socket is symmetrical. A socket only becomes a server/client socket after the first
action is taken. Should you desire to run HTTP sockets on top of obscure rendezvous P2P
connections, you’re the one possessing control about what should happen.

There are plenty of small details that went into the design that I cannot possibly cover here. As an
example, try to find out how to ignore an HTTP upgrade request w/o closing the connection on
NodeJS (i.e. how to treat it as a common request that should receive a common response with no
upgrade-protocol action).

Final word
I hope this comparison served the purpose of quickly explaining what Emilua is. I’d also like to
make it clear that this project evolved from my needs to have a playground where I can experiment
with ideas of my interest and I’d have created it even if a really similar project already existed. In
fact, I’m more excited to experiment with unpopular D-Bus scripting using Emilua than running
web servers.

[1] https://luvit.io/

[2] https://github.com/ignacio/LuaNode

[3] https://github.com/lipp/nodish

[4] Conway, Melvin E.. "Design of a Separable Transition-Diagram Compiler". Commun. ACM, Volume 6 Issue 7, July 1963, Article
No. 7.

[5] https://github.com/taskcluster/docker-worker/pull/332

[6] https://github.com/esamattis/node-promisepipe/pull/9

[7] https://github.com/esamattis/node-promisepipe/pull/8

[8] Look for ASIO composed operations if you’re curious about the internals of this event.

12

https://luvit.io/
https://github.com/ignacio/LuaNode
https://github.com/lipp/nodish
http://www.melconway.com/Home/pdf/compiler.pdf
http://www.melconway.com/Home/pdf/compiler.pdf
https://github.com/taskcluster/docker-worker/pull/332
https://github.com/esamattis/node-promisepipe/pull/9
https://github.com/esamattis/node-promisepipe/pull/8

	Comparing Emilua to NodeJS
	One color
	Is it a coroutine… or is it a fiber?
	Opinionated concurrency style
	Active style
	Emilua is more explicit
	Structured concurrency
	Threads
	HTTP
	Final word

